Effect of transgenic and non-transgenic corn hybrids on the performance of quails and chicken: A review

Pengaruh hibrida jagung transgenik dan non-transgenik terhadap performa puyuh dan ayam: Review

Main Article Content

Himmatul Khasanah
Joaquin Rio V. Torres
Joseph F Dela Cruz
Listya Purnamasari
Desy Cahya Widianingru,



Ayam broiler, layer dan puyuh (Coturnix japonica) adalah jenis unggas yang semakin populer untuk dipelihara karena performa yang baik seperti produksi yang cepat, dan kemudahan perawatan, baik untuk penghasil daging dan telur di berbagai negara Asia dan di dunia. Unggas sering dipelihara dengan menggunakan jagung (Zea mays) sebagai sumber energi utama dalam ransum. Namun, dalam produksinya, jagung sering menghadapi masalah yang melibatkan hama arthropoda seperti Ngengat Penggerek Jagung Asia (Ostrinia furnacalis), dan oleh karena itu, teknologi rekayasa dalam bidang pertanian telah banyak mengembangkan banyak galur jagung transgenik yang telah ditanam dan dibiakkan agar tahan terhadap hama ini. Artikel ini bertujuan untuk mengetahui kinerja jagung transgenik sebagai pakan, keamanan dan kesetaraan gizi pada unggas baik sebagai penghasil daging maupun telur. Hasil review, menunjukkan bahwa di berbagai penelitian, tidak ada perbedaan yang signifikan antara parameter produksi pada ayam pedaging, petelur dan puyuh yang diberi pakan jagung non-transgenik konvensional dan transgenik. Kesamaan ini terlihat pada jenis unggas pedaging dan petelur. Penelitian untuk menganalisis efek jagung transgenik pada parameter komposisi kuning telur, dan komposisi otot ayam pedaging masih perlu dilakukan. Hasil kajian ini juga mengamati bahwa tidak ada gen dan protein transgenik yang tersisa setelah pemotongan unggas di dalam otot dan jaringan, yang menunjukkan bahwa masalah keamanan gen dan protein transgenik tidak ditransfer dari jagung ke produk unggas.

Kata kunci: Broiler; GMO; Kualitas daging; Pakan; Produksi telur



Broiler, Layer and Japanese Quail (Coturnix japonica) are species of poultry that have become increasingly popular to raise due to their performance such as fast production, and ease of care, either for meat and egg producers in many Asian countries and worldwide. As poultry, they are often raised using corn (Zea mays) as the primary energy source in the ration. However, corn often faces problems involving arthropod pests such as the Asian Corn Borer Moth (Ostrinia furnacalis), and as such, agricultural engineering technology has developed many strains of transgenic corn that have been grown and bred to be resistant to these pests. This article aimed to determine the transgenic corn performance as feed, safety and nutritional equivalence on poultry (quails and chicken) for meat and egg producer. The review determined that across various studies, there were no significant differences between production parameters in the broiler, layer and quails fed a conventional non-GMO diet and entirely transgenic corn. This similarity was seen in both meat and layer types. Though, research still needs to be done to assess transgenic corn's effects on parameters of yolk composition and breast muscle composition. The study also observed that no transgenic genes and proteins remained after the slaughter of the poultry in the muscle and tissues, indicating the safety concerns of transgenic genes and proteins not being transferred from the corn to poultry.

Keywords: Broiler; Egg production; Feed; GMO; Meat quality


Download data is not yet available.

Article Details

How to Cite
Khasanah, H., V. Torres , J. R., Dela Cruz, J. F., Purnamasari, L., & Widianingru, D. C. (2022). Effect of transgenic and non-transgenic corn hybrids on the performance of quails and chicken: A review: Pengaruh hibrida jagung transgenik dan non-transgenik terhadap performa puyuh dan ayam: Review. Jurnal Ilmu Peternakan Dan Veteriner Tropis (Journal of Tropical Animal and Veterinary Science), 12(3), 217–231. https://doi.org/10.46549/jipvet.v12i3.308


Abou-Kassem DE, El-Kholy MS, Alagawany M, Laudadio V and Tufarelli V. 2019. Age and sex-related differences in performance, carcass traits, hemato–biochemical parameters, and meat quality in Japanese quails. Poultry science, 98(4): 1684-1691.

Aeschbacher K, Messikommer R, Meile L and Wenk C. 2005. Bt176 corn in poultry nutrition: physiological characteristics and fate of recombinant plant DNA in chickens. Poultry Science, 84(3): 385-394.

Ahmad S, Mehmood S, Javed K, Mahmud A, Usman M, Rehman A, Ishaq HM, Hussain, H and Ghayas A. 2018. Different selection strategies for the improvement of the growth performance and carcass traits of Japanese quails. Brazilian Journal of Poultry Science, 20: 497-506.

Alagawany M, Nasr M, Al-Abdullatif A, Alhotan RA, Azzam MM and Reda FM. 2020. Impact of dietary cold-pressed chia oil on growth, blood chemistry, haematology, immunity and antioxidant status of growing Japanese quail. Italian Journal of Animal Science, 19(1): 896-904.

Anastasio A. 2021. The Influence of Broilers' Body Weight on the Efficiency of Electrical Stunning and Meat Quality under Field Conditions. Animals, 11(5): 1362. https://doi.org/10.3390/ani11051362

Baéza E, Guillier L and Petracci M. 2021. Production factors affecting poultry carcass and meat quality attributes. Animal, 100331.

Bednarek D, Dudek K, Kwiatek K, Świątkiewicz M, Świątkiewicz S and Strzetelski J. 2013. Effect of a diet composed of genetically modified feed components on the selected immune parameters in pigs, cattle, and poultry. Bulletin of the Veterinary Institute in Pulawy, 57: 209-2017.

Bhutada G. 2021. From feed to fuel: This is how corn is used around the world. [online] https://www.weforum.org. Available at: https://www.weforum.org/agenda/2021/06/corn-industries- sustainability-food prices#:~:text=Corn%20has%20a%20number%20of, key%20component%20of%20livestock%27s%20diet. [29 Maret 2022]

Boni I, Nurul H and Noryati I. 2010. Comparison of meat quality characteristics between young and spent quails. Int Food Res J, 17(3): 661-6.

Brake J, Faust MA and Stein J. 2003. Evaluation of transgenic event BT11 hybrid corn in broiler chickens. Poultry Science, 82(4): 551559. https://doi.org/10.1093/ps/82.4.551

Castellini C, Berri C, Le Bihan-Duval E and Martino G. 2008. Qualitative attributes and consumer perception of organic and free-range poultry meat. World's Poultry Science Journal, 64(4): 500-512.

Chand N, Naz S, Rehman Z and Khan RU. 2018. Blood biochemical profile of four fast-growing broiler strains under high ambient temperature. Applied Biological Chemistry, 61(3): 273-279. DOI: https://doi.org/10.1007/s13765-018-0358-4

Czerwiński J, Bogacki M, Jalali BM, Konieczka P and Smulikowska S. 2015a. The use of genetically modified Roundup Ready soybean meal and genetically modified MON 810 maize in broiler chicken diets. Part 1. Effects on performance and blood lymphocyte subpopulations. Journal of Animal and Feed Sciences, 24(2): 134-143.

Czerwinski J, Slupecka-Ziemilska M, Wolinski J, Barszcz M, Konieczka P and Smulikowska S. 2015b. The use of genetically modified Roundup Ready soybean meal and genetically modified MON 810 maize in broiler chicken diets. Part 2. Functional status of the small intestine. J. Anim. Feed Sci, 24(2): 144-152.

Danek-Majewska A, Kwiecień M, Winiarska-Mieczan A, Haliniarz M and Bielak A. 2021. Raw Chickpea (Cicer arietinum L.) as a Substitute of Soybean Meal in Compound Feed for Broiler Chickens: Effects on Growth Performance, Lipid Metabolism, Fatty Acid Profile, Antioxidant Status, and Dietary Value of Muscles. Animals, 11(12): 3367.

Das PK and Samanta I. 2021. Role of backyard poultry in south-east Asian countries: Post COVID-19 perspective. World's Poultry Science Journal, 77(2): 415-426.

de Vos CJ and Swanenburg M. 2018. Health effects of feeding genetically modified (GM) crops to livestock animals: A review. Food and Chemical Toxicology, 117: 3-12.

Deaville ER and Maddison BC. 2005. Detection of transgenic and endogenous plant DNA fragments in the blood, tissues, and digesta of broilers. Journal of Agricultural and Food Chemistry, 53(26): 10268-10275.

Dela Cruz J, Acda S, Josephine C and Nelia C. 2012. Effects of different corn hybrids on performance parameters, carcass yield and organoleptic characteristics of broilers. Philippine Journal of Veterinary and Animal Science, 38(1): 2333.

EFSA. 2004. Guidance document of the scientific panel on genetically modified organisms for the risk assessment of genetically modified plants and derived food and feed. The EFSA Journal 99:1

El-Samahy R, El-Sayiad G, Abou-Kassem D and Ashour E. 2017. Pre-hatch performance of Japanese quail egg weight categories incubated after several storage periods. Zagazig Journal of Agricultural Research, 44(2), 563570. https://doi.org/10.21608/zjar.2017.53873

Flachowsky G, Chesson A and Aulrich K. 2005. Animal nutrition with feeds from genetically modified plants. Archives of Animal Nutrition, 59(1): 140. https://doi.org/10.1080/17450390512331342368

Flachowsky G, Schafft H and Meyer U. 2012. Animal feeding studies for nutritional and safety assessments of feeds from genetically modified plants: a review. Journal für Verbraucherschutz und Lebensmittelsicherheit. 7:179-194

Flachowsky G, Halle I and Aulrich K. 2005. Long term feeding of bt-corn a ten-generation study with Quails. Archives of Animal Nutrition, 59(6): 449-451. https://doi.org/10.1080/17450390500353549

Gaines AM, Allee GL and Ratliff BW. 2011. Nutritional evaluation of Bt (Mon810) and roundup ready corn compared with commercial hybrids in broilers. Poultry Science Journal, 80, 51.

Gao C, Ma Q, Zhao L, Zhang J and Ji C. 2014. Effect of dietary phytase transgenic corn on physiological characteristics and the fate of recombinant plant DNA in laying hens. Asian-Australasian Journal of Animal Sciences, 27(1): 77.

Ghazaghi M, Hassanabadi A and Mehri M. 2019. Pre-cecal phosphorus digestibility for corn, wheat, soybean meal, and corn gluten meal in growing Japanese quails from 28 to 32 d of age. Animal Nutrition, 5(2): 148-151.

Halle I and Flachowsky G. 2014. A four-generation feeding study with genetically modified (Bt) maize in laying hens. Journal of Animal and Feed Sciences, 23: 58-63

Hamm D and Ang CYW. 1982. Nutrient composition of quail meat from three sources. Journal of Food Science, 47(5): 1613-1614.

Hamrum CL. 1953. Experiments on the senses of taste and smell in the bob-white quail (Colinus virginianus virginianus). American Midland Naturalist, 49(3): 872. https://doi.org/10.2307/2485214

Hedawy KAA and Wassel FAA. 2005. Studies on some bacterial agent causing mortalities in quail farms in kena province. Assiut Veterinary Medical Journal, 51, 105 .

Huss D, Poynter G and Lansford R. 2008. Japanese quail (Coturnix japonica) as a laboratory animal model. Lab Animal, 37:513-519.

ISAAA. 2019. Event name: BT176 (176). Bt176 (176) GM Approval Database ISAAA. [online]. Available at: from:https://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=127 [5 April 2022]

ISAAA. 2022. Maize (Zea mays L.) GM Events (244 Events). [online]. Available at: https://www.isaaa.org/gmapprovaldatabase/crop/default.asp?CropID=6&Crop=Maize. [27 Juni 2022].

Jennings JC, Albee LD, Kolwyck DC, Surber JB, Taylor ML, Hartnell GF, Liretta FP and Glenn KC. 2003. Attempts to detect transgenic and endogenous plant DNA and transgenic protein in muscle from broilers fed YieldGard Corn Borer Corn. Poultry Science, 82(3): 371-380.

Kadlec J, Rehout V, Citek J, Hanusova L, Hosnedlova B. 2009. The influence of GM Bt maize MON 810 and RR soya in feed mixtures upon slaughter, haematological and biochemical indicators of broiler chickens. Journal of Agrobiology, 26(1): 51-55.

Kleter GA and Kok EJ. 2012. Safety of genetically modified (GM) crop ingredients in animal feed. Animal Feed Contamination, 467-486. https://doi.org/10.1533/9780857093615.5.467

Korwin-Kossakowska A, Sartowska-Zygowska K, Linkiewicz A, Tomczyk G, Prusak B and Sender G. 2013. Evaluation of the effect of genetically modified RR soya bean and Bt MON 810 maize in the diet of Japanese quail on chosen aspects of their productivity and retention of transgenic DNA in tissues. Archives Animal Breeding, 56 (1): 1-12.

Langen EM, von Engelhardt N and Goerlich-Jansson VC. 2017. Social environment during egg laying: Changes in plasma hormones with no consequences for yolk hormones or fecundity in female Japanese quail, Coturnix japonica. Plos One, 12(5), e0176146. https://doi.org/10.1371/journal.pone.0176146

Li Y and Wang TY. 2017. Germplasm enhancement in maize: advances and prospects. Journal of Maize Sciences, 25(3): 11-18.

Li Z, Gao Y, Zhang M, Feng J and Xiong Y. 2015. Effects of a diet containing genetically modified rice expressing the Cry 1 Ab/1 Ac protein (Bacillus thuringiensis toxin) on broiler chickens. Archives of animal nutrition, 69(6): 487-498.

Liu Y, Zhang D, Yu C, Wang C and Bian H. 2017. A 90 d subchronic feeding study of CP4-EPSPS transgenic glyphosate herbicide-resistant soybean (Glycine max) ZZ-J9331 in quails (Coturnix japonica). Journal of Agricultural Biotechnology, 25(3): 451-460.

Lu L, Guo J, Li S, Li A, Zhang L, Liu Z and Luo X. 2015. Influence of phytase transgenic corn on the intestinal microflora and the fate of transgenic DNA and protein in digesta and tissues of broilers. Plos one, 10(11), e0143408.

Ma Q, Gao C, Zhang J, Zhao L, Hao W and Ji C. 2013. Detection of transgenic and endogenous plant DNA fragments and proteins in the digesta, blood, tissues, and eggs of laying hens fed with phytase transgenic corn. PLoS One, 8(4), e61138.

McNaughton J, Roberts M, Rice D, Smith B, Hinds M, Delaney B, Iiams C, Sauber T. 2011. Comparison of broiler performance and carcass yields when fed transgenic maize grain containing event DP-Ø9814Ø-6 and processed fractions from transgenic soybeans containing event DP-356Ø43. Poultry science, 90(8): 1701-1711.

Murawska D. 2017. The effect of age on growth performance and carcass quality parameters in different poultry species. Poultry Science, 33-50.

Nafus DM and Schreiner IH. 1991. Review of the biology and control of the Asian corn borer, Ostrinia furnacalis (Lep: Pyralidae). International Journal of Pest Management, 37(1): 41-56.

Nunes BDN, Ramos SB, Savegnago RP, Ledur MC, Nones K, Klein CH and Munari DP. 2011. Genetic parameters for body weight, carcass chemical composition and yield in a broiler-layer cross developed for QTL mapping. Genetics and Molecular Biology, 34, 429-434. https://doi.org/10.1590/s1415-47572011005000019

Řehout V, Hanusová L, Kadlec J, Čítek J and Hosnedlová B. 2008. Detection of DNA fragments from roundup ready soya and Bt maize in organs of broilers. J Agrobiol. 25(1):141–4.

Řehout, V., Kadlec, J., Čítek, J., Hradecká, E., Hanusová, L., Hosnedlova, B., and Lád, F. (2009). The influence of genetically modified Bt maize MON 810 in feed mixtures on slaughter, haematological and biochemical indices of broiler chickens. Journal of Animal and Feed Sciences, 18(3): 490-498.

Reichert M, Kozaczyński W, Karpińska TA, Bocian Ł, Jasik A, Kycko A, Świątkiewicz M, Świątkiewicz S, Furgał-Dierżuk I, Arczewska-Włosek A, Strzetelski J and Kwiatek K. 2012. Histopathology of internal organs of farm animals fed genetically modified corn and soybean meal. Bull Vet Inst Pulawy, 56, 617-22.

Rossi F, Morlacchini M, Fusconi G, Pietri A, Mazza R, Piva G. 2005. Effect of Bt corn on broiler growth performance and fate of feed derived DNA in digestive tract. Poultry Sci 84, 1022-1033 SAS/STAT (2010) Inc., Cary, NC, USA

Salisu IB, Amin AB, Ali Q, Tijjani A and Ibrahim AA. 2019. Digestive fate of transgenic DNA and protein in livestock tissues fed genetically modified feed ingredients: A review. Nigerian Journal of Animal Production, 46(2): 8-21.

Santhi D and Kalaikannan A. 2017. Japanese quail (Coturnix coturnix japonica) meat: characteristics and value addition. World's poultry science journal, 73(2):337-344.

Sartowska K, Korwin-Kossakowska A, Sender G, Jozwik A and Prokopiuk M. 2012. The impact of genetically modified plants in the diet of Japanese quails on performance traits and the nutritional value of meat and eggs preliminary results. Archiv fur Geflugelkunde, 76, 140-144.

Sartowska KE, Korwin-Kossakowska A and Sender G. 2015. Genetically modified crops in a 10-generation feeding trial on Japanese quails performance and body composition. Poultry Science, 94(12), 2909-2916. https://doi.org/10.3382/ps/pev271

Scheideler SE, Hileman RE, Weber T, Robeson L and Hartnell GF. 2008. The in vivo digestive fate of the Cry3Bb1 protein in laying hens fed diets containing MON 863 corn. Poultry science, 87(6), 1089-1097.

Sebho HK. 2016. Exotic chicken status, production performance and constraints in Ethiopia: a review. Asian Journal of Poultry Science, 10(1), 30-39.

Shanaway M. 1994. Quail Production Systems a review; Food and Agriculture Organization of the United Nations, Rome. ISBN 9251033846.

Smaldone G, Capezzuto S, Ambrosio RL, Peruzy MF, Marrone R, Peres G and Anastasio A. 2021. The influence stunning and meat quality under field conditions. Animals, 11(5), 1362. https://doi.org/10.3390/ani11051362

Swiatkiewicz S, Koreleski J, Arczewska-Wlosek A, Swiatkiewicz M, Twardowska M, Markowski J and Kwiatek K. 2011. Detection of transgenic DNA from Bt maize and herbicide tolerant soybean meal in tissues, eggs and digestive tract content of laying hens fed diets containing genetically modified plants. Annals of Animal Science, 11(3).

Świątkiewicz S, Twardowska M, Markowski J, Mazur M, Sieradzki Z and Kwiatek K. 2010. Fate of transgenic DNA from Bt corn and Roundup Ready soybean meal in broilers fed GMO feed. Bulletin of the Veterinary Institute in Pulawy, 54, 237-42.

Swiatkiewicz S and Arczewska A. 2011. Prospects for the use of genetically modified crops with improved nutritional properties as feed materials in Poultry Nutrition. World's Poultry Science Journal, 67(4), 631642. https://doi.org/10.1017/s0043933911000729

Swiatkiewicz S, Swiatkiewicz M, Arczewska-Wlosek A and Jozefiak D. 2014. Genetically modified feeds and their effect on the metabolic parameters of food-producing animals: A review of recent studies. Animal Feed Science and Technology, 198, 119. https://doi.org/10.1016/j.anifeedsci.2014.09.009

Taylor ML, Hartnell GF, Riordan SG, Nemeth, MA, Karunanandaa K, George B and Astwood JD. 2003. Comparison of broiler performance when fed diets containing grain from Roundup Ready (NK603), yieldgard x roundup ready (Mon810 X NK603), non-transgenic control, or Commercial Corn. Poultry Science, 82(3), 443453. https://doi.org/10.1093/ps/82.3.443

Taylor M, Lucas D, Nemeth M, Davis S and Hartnell G. 2007. Comparison of broiler performance and carcass parameters when fed diets containing combined trait insect-protected and glyphosate-tolerant corn (mon 89034 × NK603), control, or conventional reference corn. Poultry Science, 86(9), 19881994. https://doi.org/10.1093/ps/86.9.1988

Turgud FK and Narinç D. 2022. Influences of Dietary Supplementation with Maca (Lepidium meyenii) on Performance, Parameters of Growth Curve and Carcass Characteristics in Japanese Quail. Animals, 12(3), 318.

Tyagi PK, Shrivastav AK, Mandal AB, Tyagi PK and Elangovan AV. 2010. The feeding value of quality protein maize is similar to commercial maize for egg production and quality traits in laying hens. Indian Journal of Poultry Science, 45(2), 217-219.

Wang S, Tang CH, Zhang JM and Wang XQ. 2013. The effect of dietary supplementation with phytase transgenic maize and different concentrations of non-phytate phosphorus on the performance of laying hens. British poultry science, 54(4), 466-470.

Yassin H, Velthuis AGJ, Boerjan M and van Riel J. 2009. Field study on broilers’ first-week mortality. Poultry Science, 88(4), 798804. https://doi.org/10.3382/ps.2008-00292

Yonemochi C, Fujisaki H, Harada C, Kusama T and Hanazumi M. 2002. Evaluation of transgenic event CBH 351 ( StarLink ) corn in broiler chicks. Anim Sci J. 73(3):221–8.

Zhang L, Shen W, Fang Z and Liu B. 2021. Effects of genetically modified maize expressing Cry1Ab and EPSPS proteins on Japanese quail. Poultry Science, 100(2), 10681075. https://doi.org/10.1016/j.psj.2020.11.014

Zhang S, Ao X and Kim IH. 2019. Effects of non-genetically and genetically modified organism (maize-soybean) diet on growth performance, nutrient digestibility, carcass weight, and meat quality of broiler chicken. Asian-Australasian Journal of Animal Sciences, 32(6), 849.

Zhong RQ, Chen L, Gao LX, Zhang LL, Yao B, Yang XG and Zhang HF. 2016. Effects of feeding transgenic corn with mCry1Ac or maroACC gene to laying hens for 12 weeks on growth, egg quality and organ health. animal, 10(8), 1280-1287.